The NIH Guidelines describe experiments that must be registered and approved by Yale University’s Institutional Biological Safety Committee (the Yale Biological Safety Committee) and those experiments that are exempt from the Guidelines and do not require registration. For institutions that receive funding from the NIH for molecular biology research, the Guidelines become a condition of the receipt of funding. In order to continue to receive funding from the NIH, ALL researchers at Yale University MUST COMPLY with the NIH rDNA Guidelines, regardless of funding source. Failure to comply with the NIH Guidelines can lead to suspension of research privileges. Systemic failure to comply with the Guidelines may result in the freezing of funds directed to Yale by the NIH.

The phrase rDNA is used throughout this document. rDNA refers to recombinant and synthetic nucleic acid molecules to reflect changes in the April 2016 version of the NIH Guidelines.

CATEGORIES OF RDNA WORK THAT REQUIRE REGISTRATION:

1. *Cloning a therapeutic antibiotic resistance gene into a human, animal or plant pathogen, if the transfer could compromise the ability to treat or control the disease. (Section III-A-1)*

Note: Registration with the Yale Biological Safety Committee is still required even if:
- this drug resistance is acquired naturally;
- the transferred resistance gene is related to a drug that is an end of the line alternative treatment (2nd, 3rd, 4th, or 5th line drug);
- the drug was used years ago, but is not the preferred treatment today (it may be the only treatment in developing countries);
- the drug is only used to treatment a very small portion of the population (i.e. those with specific contraindications to front line drugs)
- Working with antibiotic resistance strains of pathogens also require registration (even if you did not create them)

Examples:
- Cloning a gene for Erythromycin resistance into Borrelia burgdorferi
- Cloning a gene for Chloramphenicol resistance into Rickettsia typhi
- Cloning a gene for Pyrimethamine resistance into Toxoplasma gondii
- Cloning a gene for Rifampin resistance into Mycobacterium tuberculosis
Caution:

- Be careful when using old plasmids for cloning experiments involving pathogens. Many of the old plasmids carry genes for antibiotics that have been used therapeutically or are related to front line drugs.
 - Avoid using these plasmids when working with related pathogens;
 - Verify that the antibiotic resistance gene is not in a location on the plasmid that can be transferred to the pathogen via a double cross over event.

Websites: NIH OSP FAQ – Major Actions

2. Cloning DNA encoding for a low LD50 toxin or work with vectors that express toxins with a low LD50 (< 100 ug/kg body weight). (Section III-B-1)

Examples of toxins with low LD50’s are:

- Botulinum toxin
- Staphylococcal enterotoxin B
- Tetrodotoxin
- Clostridium tetanus toxin

Yale EHS Table of Toxins:
Univ. of Florida – Toxin Lists: http://www.ehs.ufl.edu/Bio/toxin.htm

3. Human Gene Transfer Experiments (Section III-C-1)

The deliberate transfer of recombinant DNA, or DNA or RNA derived from recombinant DNA, into one or more human research participants are subject to the NIH Guidelines. This includes the transfer of DNA with defective viral vectors, such as retroviral, adenoviral and lentiviral vectors, along with the use of liposomes and other methods of delivery.

Human gene transfer experiments with synthetic nucleic acid molecules also require registration if any of the following criteria are met: The synthetic nucleic acid molecules:

- Contain more than 100 nucleotides; or
- Possess biological properties that enable integration into the genome (e.g. cis elements involved integration; or
- Have the potential to replicate in a cell; or
- Can be translated or transcribed
These experiments require registration with the NIH Office of Biotechnology Activities (formerly Office of Biotechnology Activities) and also approval from the Yale IRB or Human Investigations Committee and the U.S. Food and Drug Administration.

Websites: Yale HGT experiments:
http://ehs.yale.edu/human-gene-transfer

NIH OSP Frequently Asked Questions on Human Gene Transfer Experiments:

4. rDNA Experiments involving the use of a human, animal or plant pathogen
 (whether the recombinant or synthetic nucleic acid molecules originated from your lab or another). (Section III-D-1, III-D-2, III-D-3)

Examples:
- Cloning a gene into a pathogen (i.e. expressing a gene into VSV, Vaccinia Virus, Tobacco Mosaic Virus, Mouse Cytomegalovirus)
- Cloning a pathogen into a lower eukaryotic or prokaryotic cell;
- Using a defective pathogen vector with or without helper virus in cell culture or animal experiments, examples include:
 - Poxviruses (Vaccinia)
 - Herpesvirus vectors (HSV)
 - Lentivirus vectors (HIV, FIV based)
 - Retroviruses (murine retroviruses)
 - Adenoviruses
 - Adeno-Associated Virus vectors
 - Vesicular Stomatitis Virus vectors
 - Sindbis Virus vectors

A helpful guidance document developed by Stanford University for the classification of experiments involving defective viral vectors can be accessed at the following website:

Note that rDNA experiments involving ≥ 50 % of genetic material from Risk Group 2 organisms must also be registered with the IBC.

5. Cloning DNA or RNA from Risk Group 3 or Risk Group 4 human pathogens, restricted animal or plant pathogens, or Select Agents. (Section III-D-2)

Any rDNA experiments with these materials must be registered with and approved by the Yale IBC, even if you are working with only one base pair of DNA or RNA from these agents.

Websites: NIH Appendix B (Risk Groups)
American Biological Safety Association Risk Group Classifications of Etiologic Agents:
http://www.absa.org/riskgroups/index.html

List of restricted animal pathogens.

Select Agent List:
http://www.cdc.gov/od/sap/docs/salist.pdf
http://www.selectagents.gov/Select%20Agents%20and%20Toxins%20List.html

6. *rDNA Experiments involving whole animals, plants, and arthropods (and insects)… (Section III-D-4, III-D-5, III-E-3)*

Experiments in this category include:
- Experiments involving toxins, pathogens, defective vectors, an other genetically modified materials used in animal, plants or insects.
- Creation of transgenic animals
 - Mice, rats
 - Zebrafish
 - Drosophila, butterflies
 - Other

Note: For rodents only, the purchase or transfer of transgenic rodents is exempt from the NIH rDNA Guidelines and does not require registration (if the transgene used does not code for a toxic, virulent or oncogenic sequence).

Purchase is defined as buying a transgenic rodent that has been created by another entity outside of your laboratory.

The transfer of a transgenic rodent to your laboratory is also exempt (provided the transgene doesn’t code for toxic, oncogenic or potentially harmful gene).

Transfer is defined as the acquisition into your research lab of a transgenic animal created (made) by another entity.

Note: In each case above, you may have designed or created the gene that has been inserted into the developing embryo of the transgenic rodent, but if you are not the group that has performed the actual procedure (i.e. the lab that inserted the gene into the embryo), you are exempt from the rDNA Guidelines. **If your lab will insert the gene into the embryo, you must register this work.**

Knock-out Animals
Knock-out (gene silencing, gene ablation, etc.) rodents are exempt from the NIH Guidelines as long as the method to generate the knock-out animal does not leave any
“new” genetic material behind in the genome after the procedure. If DNA from the molecule used to create the knock-out is permanently inserted into the genome, the experiment will require registration with the Yale Biological Safety Committee.

Exemption for Breeding Transgenic Rodents

Note: Generation of transgenic rodents by breeding to create a new strain shall be EXEMPT from the NIH Guidelines if the following criteria are met.

- Both parental rodents can be housed under BSL1 containment; AND

- Neither parental transgenic rodent contains the following genetic modifications:
 - Incorporation of more than 50% of the genome of an exogenous eukaryotic virus from a single family of viruses; OR
 - Incorporation of a transgene that is under the control of a gammaretroviral long terminal repeat (LTR); AND

- The transgenic rodent that results from this breeding is not expected to contain more than 50% of an exogenous viral genome from a single family of viruses.

This exemption DOES NOT pertain to other transgenic animals such as zebrafish, drosophila, rabbits, pigs, etc. It also DOES NOT pertain to transgenic experiments involving plants.

7. **Large Scale rDNA Experiments (Section III-D-6)**

Any rDNA experiments at any level or Risk Group, including exempt and non-exempt experiments that generate a volume of culture that is in excess of 10 liters require registration with the Yale Biological Safety Committee.

Note: Work with 10 L may be in a single fermentation vessel (10 L or larger) or a series of flasks whose aggregate volume would exceed 10 L.

Examples include: Growing up five 2 L flasks of E. coli K-12 cultures expressing your gene of interest. Growing 10 L of Saccharomyces cerevisiae in a fermentation apparatus to get a sufficient yield of the desired protein.

8. **Synthetic Nucleic Acid Experiments that are covered by the Guidelines:**

- Research that presents biosafety risks equivalent to rDNA research that is subject to the NIH Guidelines such as research with a genetically modified virus or a vector derived solely by synthetic techniques.
 - The molecules can replicate
 - They can generate nucleic acids that can replicate in a living cell
 - They can integrate into a host cell’s DNA
- They produce a toxin that is lethal for vertebrates at an LD50 of less than 100 nanograms/kilogram body weight
- They synthesize an organism that doesn’t occur naturally outside of a laboratory setting (i.e. 1918 H1N1 Influenza)

Synthetic Nucleic Acid Experiments that are EXEMPT from the Guidelines:

- Introduction of certain synthetic nucleic acids into a biological system that is not expected to present a biosafety risk that requires review by the IBC
- Introduction of synthetic nucleic acid molecules into biological systems akin to processes of nucleic acid transfer that already occur in nature.
- Experiments with synthetic nucleic acid molecules that are not contained in cells, organisms or viruses
- Those synthetic nucleic acid molecules that meet the following criteria shall be exempt:
 1) Those that can neither replicate nor generate nucleic acids that can replicate in any living cell (e.g. oligonucleotides or other synthetic that do not contain an origin of replication or contain elements known to interact with either DNA or RNA polymerase), and
 2) Those that are not designed to integrate into DNA, and
 3) Those that do not produce a toxin that is lethal for vertebrates at and LD50 of less than 100 nanograms per kilogram body weight.

An example of an exempt synthetic nucleic acid molecule is a synthetic short-interfering RNA (siRNA) that targets an HIV viral protein required for transcription activation, even if this siRNA is injected into animals or used in cell culture.

- Also exempt are those synthetic nucleic acid molecules that consist solely of the exact recombinant or synthetic nucleic acid sequence from a single source that exists outside of a laboratory setting. (Research with nucleic acid sequences for organisms that do not currently exist in nature outside of the laboratory setting would not be exempt (e.g. an identical copy of the 1918 H1N1 influenza virus)
- The chemical synthesis of nucleic acids (the NIH Guidelines only apply once synthetic nucleic acids are placed in a biological system).