Sample Project Safety Plan

Date: 04.14.2015

Plan Completed By: Bulldogs Racing

Team Members and Contact Information

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background

Bulldogs Racing is the Yale University chapter of the Society of Automotive Engineers (SAE). The team designs and produces high-performance, Formula-style race cars for the annual collegiate Formula SAE race series. For 2015-2016, Bulldogs Racing is building an entirely new car. Major projects for the year 2015 include collecting data on the BR14 car in its current state, designing a new high voltage system, and designing and fabricating an optimized chassis and new carbon fiber body. The knowledge that the team acquires on BR14 will be used to refine the design of BR16 as well as to increase its durability and reliability. BR14 incorporates a 250 cc bike engine and an electric motor. The total sustained power output is around 60 kW, with a peak power output of about 100hp. BR16 will incorporate two electric motors, each capable of putting out a peak power of 108hp.

Proposed Test Description(s)

We will be driving the car on the []; at no point will we be conducting any off-road tests. The course will be pre-determined with an emphasis on durability rather than agility or speed. Course will be marked with cones to indicate both the track and the direction.

Signs that read “BRAKE” will be placed at the end of straights longer than 25m to warn drivers about when to brake. Curbs and other fixed objects will not be used as an integral part of course markings – there will be at least 1m of distance between the course marked by cones and the fixed objects.

- Braking
 - Regeneration efficiency
- Energy Consumption
 - Fuel
 - Battery Charge
- Heat generation
 - Internal combustion engine
 - Batteries
 - Electric motor
- Sensor analysis and testing
 - GPS data
 - Roll, pitch, yaw data
 - Weight transfer calculations
 - Pedal travel optimization
 - Center of gravity optimization
 - Suspension adjustment and optimization
 - Data transmission over wireless communication

We have removed all components of testing that would constitute “competitive driving”. The purpose of the test will be to gauge the durability and reliability of the car, as such the car will not be driven to test its agility or speed.

Speed of the vehicle will not exceed 30 mph at any point on the course, and when the vehicle is being driven towards the other cars in the lot, the speed will be limited to 20 mph. Cones will be placed to ensure that the vehicle is forced to slow down when approaching the perimeter of the track. All track activities will be suspended when a pedestrian or vehicle appears to be entering
Sample Project Safety Plan

Cones will be placed around the central light post as well as around harsh road imperfections to ensure a smooth operating of the vehicle in order to prevent damage to the vehicle.

Proposed Project Schedule

Hazard Assessment

Using the attached table for Example Hazards and Mitigation/Safety Measures as a reference, identify the hazards associated with the proposed project along with controls that will be used to mitigate them.

Potential hazards include moving parts, high voltage system on the car, internal combustion engine, on-board fuel, component failures and driving obstacles. It is understood that such hazards that are inherent to race cars can be successfully handled by incorporating safety systems in the design, operator training or control of the environment. Below is a list of potential hazards:

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Mitigation/Safety Measure(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of control - driver</td>
<td>Brake pedal has an over-travel protection switch that shuts down the internal combustion engine and the high voltage system in case of brake failure. Rear and front hydraulic brake lines have separate reservoirs and separate master cylinders. Throttle system is completely electronic, and in the unlikely case of a failure, the pedal assembly is designed to spring back to zero throttle position. A mechanical throttle limit will be introduced to limit the speed to about 15 mph for the test runs. The car will not be tested for its agility. The course will not contain sharp turns, hairpins or other challenging features. The main objective will be to familiarize people with the race car and test its reliability.</td>
</tr>
<tr>
<td>Loss of control – fixed objects</td>
<td>The cones that mark the course will be strategically placed away from any fixed objects. Signs that read “BRAKE” will be placed wherever there is a 25m or longer straight to indicate when to start braking.</td>
</tr>
<tr>
<td>Driver Awareness</td>
<td>All drivers will be required to hold a valid driver’s license (US or other) or a race car license. Anyone who exhibits dangerous or on-the-limit driving or a lack of understanding of the car’s operation will, at the sole discretion of the Responsible Safety Officer or the Track Safety Officer, have their driving privileges suspended for the day.</td>
</tr>
<tr>
<td>Loss of control - bystanders</td>
<td>High visibility cones will be used to mark the test track. There will be a designated ‘paddock’ area and nobody will be allowed to leave that area when the car is in motion. There is a high-visibility LED light mounted on the main roll hoop, which flashes when the car is active and ready to be driven.</td>
</tr>
<tr>
<td>External impact</td>
<td>Race car has an external impact attenuator (11 kJ energy absorption potential) and a three-piece carbon fiber body, as well as a thick aluminum front anti-intrusion plate, front steel bulkhead and triple steel side impact protection bars. The frame is made out of chrome-moly steel, professionally welded. Two roll hoops will prevent any impact to the driver’s head in the very unlikely case of a rollover.</td>
</tr>
<tr>
<td>Drivetrain failure</td>
<td>All components in the engine bay of the car, including the high voltage system, are shielded from the drivetrain and the chain by means of a chain guard.</td>
</tr>
<tr>
<td>Driver entrapment and equipment</td>
<td>Driver’s seat is made out of one-piece carbon fiber, with a multi-point seat belt design. Shoulder and lap belts can withstand up to a force of 13 kN. Drivers will wear race helmets, fire suits, race gloves and will use hearing protection. Seat belts will be tightened by a crew member.</td>
</tr>
<tr>
<td>Driver control units</td>
<td>There are dedicated engine shut off, High Voltage shut off, emergency shut off buttons on the dashboard.</td>
</tr>
<tr>
<td>Driver emergency egress</td>
<td>The steering wheel and the seat belt harness employ quick release systems, enabling the driver to egress the vehicle within 5 seconds in an emergency situation.</td>
</tr>
<tr>
<td>Components snagging driver’s clothes</td>
<td>All moving parts in the driver’s compartments, such as the steering wheel column, are housed in protective cases to prevent snagging. All pedals are made out of steel, body panels incorporate carbon fiber and aluminum.</td>
</tr>
<tr>
<td>Compromised hot body in the engine bay</td>
<td>An aluminum firewall separates and insulates the driver from all hot bodies, high voltage system, gas tank and drivetrain</td>
</tr>
<tr>
<td>Engine overheat</td>
<td>There is a dedicated radiator to cool the engine.</td>
</tr>
</tbody>
</table>
Sample Project Safety Plan

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel leakage</td>
<td>Gas tank (1 gal capacity) is made out of aluminum, has a sealing cap and is vented to prevent vapor buildup. There will be a designated track marshal with a fire extinguisher, ready to engage in case of an emergency.</td>
</tr>
<tr>
<td>Vehicle visibility</td>
<td>There is a high-visibility LED light mounted on the main roll hoop, which flashes when the car is active and ready to be driven. There is a dedicated brake light at the back.</td>
</tr>
<tr>
<td>Exposure to energized equipment – hybrid high voltage system</td>
<td>Battery box is made out of fire-resistant and insulating Kevlar. All high voltage connections coming out of the battery box are housed in fire-resistant and insulating conduit. All low voltage is separate from the high voltage.</td>
</tr>
<tr>
<td>Electric potential on the frame</td>
<td>Ground fault detector shuts down the high voltage system in the event of a faulty grounding of the circuit.</td>
</tr>
<tr>
<td>Accidental activation of electrical system</td>
<td>All high voltage components are marked by "High Voltage" signs. Both the low voltage and the high voltage keys need to be inserted and turned, then the high voltage system needs to be activated by a crew member, but it is live only when the driver presses the HV button on the dashboard. When the High Voltage system is activated there is a buzzer loud enough to wake the dead, and flashing LEDs that are mounted at the top of the highest roll hoop of the car.</td>
</tr>
<tr>
<td>Electric system cooling</td>
<td>One of the two radiators is dedicated to the cooling of the high voltage system.</td>
</tr>
<tr>
<td>Big red buttons</td>
<td>All around the car there are multiple emergency shut off buttons that shut down the high voltage circuit and the engine – these are wired in series with the brake over-travel switch and each other, so any one of them shuts down the entire car. They need to be manually reset before the car can be powered again.</td>
</tr>
<tr>
<td>Complete electrical failure</td>
<td>Steering, suspension and the brakes are entirely mechanical so they are fully functional regardless of the operation of the car.</td>
</tr>
<tr>
<td>Injury</td>
<td>A first aid kit designated for 25 people will be on-site. Responsible Safety Officer will maintain the communication with the medical personnel, faculty adviser and EHS.</td>
</tr>
<tr>
<td>Safety equipment</td>
<td>Race helmets, race gloves, hearing protection, fire suits, high visibility cones, safety glasses, fire extinguisher, first aid kit and spill absorber will be brought to the testing site by the team. There will be a designated Responsible Safety Officer present throughout the event.</td>
</tr>
<tr>
<td>Noise</td>
<td>The car complies with the noise limits set forth by the Formula Hybrid committee.</td>
</tr>
<tr>
<td>Certification</td>
<td>The entire race car was scrutinized by the Formula Hybrid Committee of 2014 and is certified to be mechanically and electrically safe and track-worthy.</td>
</tr>
</tbody>
</table>

Pre-Test Checklist:
- **Nut/Bolt check:** One person will be responsible checking that every bolt and nut on the car is tightened to a certain torque specification
- **Fluids Check**
 - Fuel
 - Hydraulic Fluid
 - Engine Oil
 - Transmission Oil
 - Engine coolant
- **Wheel check**
 - Tire wear and pressure
 - Brake calipers and pads
- **Packing list**
 - Basic tools to be able to put the body and wheels on/off the car during testing to inspect components
 - Fire extinguisher
 - Spill absorber
 - Fluids mentioned above
 - Starter fluid
 - Fire suits
 - Race helmets, gloves and shoes
 - Safety glasses
 - Hearing protection
 - First aid kit
 - Extra 12 V batteries and charger
 - Jumper cables
 - Infrared (or Penetration) Thermometer
Sample Project Safety Plan

- **Computers for data collection and transmission**
- **High visibility cones**
- **Marking tape**
- **Wheel chocks**
- **Tie-down straps**
- **Jack stands (for inspection) and jack**
- **Water to prevent dehydration**
- **Radio-phones**
- **Race flags**
- **Cameras**

Transportation
- Car will be strapped on a certified trailer
- Only the students with valid driver’s licenses will drive

Communication

- **Assignment of the Responsible Safety Officer**
 - Responsible Safety Officer oversees the entire event and is present on the site at all times. RSO is either a captain or the faculty adviser. If s/he has to leave, s/he will assign their duty to someone else.
 - The RSO is the point person for the communication with the faculty adviser and EHS.

- **Assignment of the Track Safety Officer**
 - Track Safety Officer oversees the safety of the driver, the car and the track. TSO is a captain, a faculty adviser or a team leader. S/he will be present throughout the entire event. If s/he has to leave, s/he will assign their duty to someone else. It is in the TSO’s and RSO’s sole discretion to suspend the driving privileges of anyone who exhibits a lack of understanding of the operation of the car or knowledge of the track. TSO will make sure that the track is constructed such that the fixed objects are at least 1ft away from any cones, the course is clearly marked for directions and that the signage (ie BRAKE signs, flag system) are being used properly.

- **Assignment of the Track Marshals**
 - Track Marshals use the flags to sign the driver what they should be doing, and they are in charge of the fire extinguishers. One will be at the paddock while the other will be on the opposite side of the track. They are to maintain the communication between the RSO, TSO and the drivers. They report to the TSO.

 - Coordinate with the faculty adviser about the departure/arrival time
 - Communicate with EHS in advance
 - Read the weather report

During Testing

- **Marshals at entry points to course**
- **Either a captain or the faculty adviser will be present and will act as RSO. The RSO will appoint the TSO**
- **Designated marshal with fire extinguisher**
- **Course marked by cones, with indicators denoting which way to go**
- **Inspect car at every driver change**
 - Shut down the high voltage system and the engine before the driver exits the car
- **Driver briefing before each driver change**
 - **Emergency egress**
 - **Dashboard buttons, in particular Dashboard Emergency Stop Button**
 - **No loose clothing/hair**
- **All members except for the driver and the designated marshals must be at the paddock**
 - Safety glasses are required
- **At every lap the designated marshals and the paddock chief will sign the driver:**
 - **Red – stop immediately**
 - **Yellow – keep going at a slower pace**
 - **Green – keep going**
 - **Checkered flag – pull to the paddock after the current lap**
- **Strictly enforced 5mph speed limit when approaching the paddock**
Sample Project Safety Plan

Post Testing

- Shut down engine and high voltage system
- Only the Responsible Safety Officer, Track Safety Officer and the designated marshals are allowed to be in physical contact with the car
 - Hot bodies should be avoided
- Strap the car on the trailer and drive back

Preparation and Testing Protocol
Upon obtaining appropriate approvals to perform testing and using a designated test site, the following procedure will be followed to ensure the safety measures referenced in the Risk Assessment are in place.

- Verify all required approvals are obtained.
 - Risk Management
 - Security
 - EHS
- Communicate to the EHS scheduled test dates and times to allow the option for oversight.
- When required, ensure appropriate supervision is available and onsite during testing procedures.
- When applicable, ensure nearby building occupants are informed of the event.
- Ensure all team members are aware of their roles and responsibilities (including emergency response procedures).
- Ensure the test area is cordoned off, free of personnel, and is clear of obstructions.
- Inspect all testing equipment and safety devices for defects and functionality.
- Ensure all mitigation/safety measures referenced in the Risk Assessment are in place and functioning.
- Ensure all participants know and understand this assessment and its requirements.
- When applicable, conduct a final check to ensure all personnel are clear of the defined test area.

Support requested from Yale organizations
Permission from the ________ to use the parking lot as a test track. We will coordinate with the _____ about what times would be best.

Acknowledgement
Team Leader:
(Sign/Date):___

Faculty Member/Supervisor
(Sign/Date):___

Attachments
- Additional Hazards and Mitigation/Safety Measures
- Illustrations and other supporting documents
Sample Project Safety Plan

Example Hazards and Mitigation/Safety Measures

<table>
<thead>
<tr>
<th>Hazard</th>
<th>What to Look For</th>
<th>Mitigation/Safety Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Impact or vibration</td>
<td>• Use different tools</td>
<td>• Change the way the work is done</td>
</tr>
<tr>
<td>• Striking</td>
<td>• Mechanize process</td>
<td>• Use lifting aid and positioning devices</td>
</tr>
<tr>
<td>• Crushing or pinching</td>
<td>• Change the way the work is done</td>
<td></td>
</tr>
<tr>
<td>• Shearing or punching</td>
<td>• Use lifting aid and positioning devices</td>
<td>• Keep things clean and uncluttered</td>
</tr>
<tr>
<td>• Exposure to energized equipment</td>
<td>• Exhaust ventilation</td>
<td>• Use lifting aid and positioning devices</td>
</tr>
<tr>
<td>• Noise</td>
<td>• Protection methods such as isolation, emergency stops, double hand starts, guarding, and cages</td>
<td>• Draw down or double guard system</td>
</tr>
<tr>
<td>• Manual material handling and ergonomics</td>
<td>• Shielding materials</td>
<td>• Lock-Out/Tag-Out</td>
</tr>
<tr>
<td>• Working at heights and fall hazards</td>
<td>• Use different tools</td>
<td>• Create standard operating procedures</td>
</tr>
<tr>
<td>• Slip and trip hazards</td>
<td>• Mechanize process</td>
<td>• Hearing Conservation</td>
</tr>
<tr>
<td>• Hot work (fire, burns, welding hazards)</td>
<td>• Change the way the work is done</td>
<td>• Hot Work Permit</td>
</tr>
<tr>
<td>• Compressed air or gas hazards</td>
<td>• Use lifting aid and positioning devices</td>
<td>• Fall Protection</td>
</tr>
<tr>
<td>• Light and laser exposure</td>
<td>• Exhaust ventilation</td>
<td>• Radiation badges</td>
</tr>
<tr>
<td>• Radiation exposure</td>
<td>• Protection methods such as isolation, emergency stops, double hand starts, guarding, and cages</td>
<td>• Electrical Safety Program</td>
</tr>
<tr>
<td>• Sources of motion that could result in being hit by objects</td>
<td>• Shielding materials</td>
<td>• Do not wear loose clothing and tie hair back</td>
</tr>
<tr>
<td>• Moving machinery and components such as grinders, drilling machines, engines, motors, pumps, etc.</td>
<td>• Use different tools</td>
<td>• Monitoring</td>
</tr>
<tr>
<td>• Sources of sharp objects, moving machinery, or points that could pierce, catch, or pinch the body</td>
<td>• Mechanize process</td>
<td>• Proper body position</td>
</tr>
<tr>
<td>• Electrical hazards such as exposed wiring or switches, exposed receptacles, power boxes, damaged tool wiring, improper grounding, etc.</td>
<td>• Change the way the work is done</td>
<td>• Attend safety training</td>
</tr>
<tr>
<td>• Work requiring energized electrical components</td>
<td>• Use lifting aid and positioning devices</td>
<td>• Follow safe work practices</td>
</tr>
<tr>
<td>• Pressurized equipment (i.e., boilers, pots, tanks, piping, hosing, etc.)</td>
<td>• Change the way the work is done</td>
<td>• Lock-Out/Tag-Out</td>
</tr>
<tr>
<td>• Inadequate clearance</td>
<td>• Use lifting aid and positioning devices</td>
<td>• Create standard operating procedures</td>
</tr>
<tr>
<td>• Elevated work areas over four feet</td>
<td>• Exhaust ventilation</td>
<td>• Hearing Conservation</td>
</tr>
<tr>
<td>• Sources of high or low temperature that could result in burns, heat stress, hypothermia or frostbite</td>
<td>• Protection methods such as isolation, emergency stops, double hand starts, guarding, and cages</td>
<td>• Hot Work Permit</td>
</tr>
<tr>
<td>• Ionizing sources such as X-rays</td>
<td>• Shielding materials</td>
<td>• Fall Protection</td>
</tr>
<tr>
<td>• Sources of electromagnetic radiation such as UV welding emissions, germicidal lamps, lasers, microwaves, and magnets</td>
<td>• Use different tools</td>
<td>• Radiation badges</td>
</tr>
<tr>
<td>• Uneven surfaces, slippery surfaces and outside ground conditions</td>
<td>• Mechanize process</td>
<td>• Electrical Safety Program</td>
</tr>
<tr>
<td>• Look for water depth and potential for falling into water</td>
<td>• Change the way the work is done</td>
<td>• Do not wear loose clothing and tie hair back</td>
</tr>
<tr>
<td>• Asbestos</td>
<td>• Use different tools</td>
<td>• Monitoring</td>
</tr>
<tr>
<td>• Building materials</td>
<td>• Mechanize process</td>
<td>• Proper body position</td>
</tr>
<tr>
<td>• Contaminated</td>
<td>• Change the way the work is done</td>
<td>• Attend safety training</td>
</tr>
<tr>
<td>• Hazardous storage or materials including wastes</td>
<td>• Use lifting aid and positioning devices</td>
<td>• Follow safe work practices</td>
</tr>
<tr>
<td>• Working with infectious agents</td>
<td>• Change the way the work is done</td>
<td>• Lock-Out/Tag-Out</td>
</tr>
<tr>
<td>• Working with large amounts of chemicals</td>
<td>• Mechanize process</td>
<td>• Create standard operating procedures</td>
</tr>
<tr>
<td>• Working with highly toxic or hazardous chemicals versus highly toxic chemicals</td>
<td>• Change the way the work is done</td>
<td>• Hearing Conservation</td>
</tr>
<tr>
<td>• Working with highly toxic or hazardous chemicals</td>
<td>• Mechanize process</td>
<td>• Hot Work Permit</td>
</tr>
<tr>
<td>• Hazardous storage or materials including wastes</td>
<td>• Change the way the work is done</td>
<td>• Fall Protection</td>
</tr>
<tr>
<td>• Ionizing sources such as X-rays</td>
<td>• Mechanize process</td>
<td>• Radiation badges</td>
</tr>
<tr>
<td>• Sources of electromagnetic radiation such as UV welding emissions, germicidal lamps, lasers, microwaves, and magnets</td>
<td>• Change the way the work is done</td>
<td>• Electrical Safety Program</td>
</tr>
<tr>
<td>• Uneven surfaces, slippery surfaces and outside ground conditions</td>
<td>• Use lifting aid and positioning devices</td>
<td>• Do not wear loose clothing and tie hair back</td>
</tr>
<tr>
<td>• Look for water depth and potential for falling into water</td>
<td>• Exhaust ventilation</td>
<td>• Monitoring</td>
</tr>
<tr>
<td>• Asbestos</td>
<td>• Protection methods such as isolation, emergency stops, double hand starts, guarding, and cages</td>
<td>• Proper body position</td>
</tr>
<tr>
<td>• Building materials</td>
<td>• Shielding materials</td>
<td>• Attend safety training</td>
</tr>
<tr>
<td>• Contaminated</td>
<td>• Use different tools</td>
<td>• Follow safe work practices</td>
</tr>
<tr>
<td>• Hazardous storage or materials including wastes</td>
<td>• Mechanize process</td>
<td>• Lock-Out/Tag-Out</td>
</tr>
<tr>
<td>• Working with infectious agents</td>
<td>• Change the way the work is done</td>
<td>• Create standard operating procedures</td>
</tr>
<tr>
<td>• Working with large amounts of chemicals</td>
<td>• Mechanize process</td>
<td>• Hearing Conservation</td>
</tr>
<tr>
<td>• Working with highly toxic or hazardous chemicals versus highly toxic chemicals</td>
<td>• Change the way the work is done</td>
<td>• Hot Work Permit</td>
</tr>
<tr>
<td>• Working with highly toxic or hazardous chemicals</td>
<td>• Mechanize process</td>
<td>• Fall Protection</td>
</tr>
<tr>
<td>• Hazardous storage or materials including wastes</td>
<td>• Change the way the work is done</td>
<td>• Radiation badges</td>
</tr>
</tbody>
</table>

Administrative

- **PPE**
 - Safety glasses
 - Tinted goggles
 - Insulated gloves
 - Hearing protection
 - Fall protection
 - Safety boots
 - Hard hat
 - Leather gauntlets
 - Welding helmets
 - Cut-resistant gloves
 - Cut-resistant sleeves

Engineering

- **Machinery and Components**
 - Use proper guarding and interlocking devices.
 - Use proper signs and labels.
 - Ensure proper maintenance.

- **Electrical Equipment**
 - Use proper ground connections.
 - Use proper bonding and grounding.
 - Use proper maintenance.

Substitution

- **Material Handling**
 - Use proper packaging and labeling.
 - Use proper storage.
 - Use proper handling techniques.

- **Chemical Storage**
 - Use proper storage areas.
 - Use proper ventilation.
 - Use proper labeling.

Cleaning Agents

- Use proper cleaning techniques.
- Use proper safety equipment.
- Use proper storage.

Laboratory Use

- Use proper laboratory equipment.
- Use proper safety equipment.
- Use proper training.

Biological Hazards

- Use proper personal protective equipment.
- Use proper ventilation.
- Use proper training.

Cryogenic Liquids

- Use proper handling techniques.
- Use proper containment.
- Use proper training.

Cryogenic Storage

- Use proper storage.
- Use proper labeling.
- Use proper maintenance.

Cryogenic Equipment

- Use proper guarding.
- Use proper maintenance.
- Use proper training.

Cryogenic Operations

- Use proper handling techniques.
- Use proper containment.
- Use proper training.